2,430 research outputs found

    Applications of single-qubit rotations in quantum public-key cryptography

    Full text link
    We discuss cryptographic applications of single-qubit rotations from the perspective of trapdoor one-way functions and public-key encryption. In particular, we present an asymmetric cryptosystem whose security relies on fundamental principles of quantum physics. A quantum public key is used for the encryption of messages while decryption is possible by means of a classical private key only. The trapdoor one-way function underlying the proposed cryptosystem maps integer numbers to quantum states of a qubit and its inversion can be infeasible by virtue of the Holevo's theorem.Comment: to appear in Phys. Rev.

    Workplace exposure to passive smoking and risk of cardiovascular disease: summary of epidemiologic studies.

    Get PDF
    We reviewed the published epidemiologic studies addressing the relationship between workplace exposure to environmental tobacco smoke (ETS) and cardiovascular disease risk in three case-control studies and three cohort studies. Although the point estimates of risk for cardiovascular disease exceeded 1.0 in five of six studies, none of the relative risks was statistically significant because of the small number of cardiovascular end points occurring in individual studies. In common with most epidemiologic investigations of the health risks of ETS, none of the workplace studies included independent biochemical validation of ETS exposure. In contrast to the evidence on increased cardiovascular disease risk from exposure to spousal ETS, studies of ETS exposure in the workplace are still sparse and inconclusive. Conversely, there is no biologically plausible reason to believe that the hazards of ETS exposure that have been demonstrated in the home should not also apply to the workplace

    Quantum non-malleability and authentication

    Get PDF
    In encryption, non-malleability is a highly desirable property: it ensures that adversaries cannot manipulate the plaintext by acting on the ciphertext. Ambainis, Bouda and Winter gave a definition of non-malleability for the encryption of quantum data. In this work, we show that this definition is too weak, as it allows adversaries to "inject" plaintexts of their choice into the ciphertext. We give a new definition of quantum non-malleability which resolves this problem. Our definition is expressed in terms of entropic quantities, considers stronger adversaries, and does not assume secrecy. Rather, we prove that quantum non-malleability implies secrecy; this is in stark contrast to the classical setting, where the two properties are completely independent. For unitary schemes, our notion of non-malleability is equivalent to encryption with a two-design (and hence also to the definition of Ambainis et al.). Our techniques also yield new results regarding the closely-related task of quantum authentication. We show that "total authentication" (a notion recently proposed by Garg, Yuen and Zhandry) can be satisfied with two-designs, a significant improvement over the eight-design construction of Garg et al. We also show that, under a mild adaptation of the rejection procedure, both total authentication and our notion of non-malleability yield quantum authentication as defined by Dupuis, Nielsen and Salvail.Comment: 20+13 pages, one figure. v2: published version plus extra material. v3: references added and update

    Modeling high-energy light curves of the PSR B1259-63/LS 2883 binary based on 3-D SPH simulations

    Full text link
    Temporal changes of X-ray to very-high-energy gamma-ray emissions from the pulsar-Be star binary PSR B1259-63/LS 2883 are studied based on 3-D SPH simulations of pulsar wind interaction with Be-disk and wind. We focus on the periastron passage of the binary and calculate the variation of the synchrotron and inverse-Compton emissions using the simulated shock geometry and pressure distribution of the pulsar wind. The characteristic double-peaked X-ray light curve from observations is reproduced by our simulation under a dense Be disk condition (base density ~10^{-9} g cm^{-3}). We interpret the pre- and post-periastron peaks as being due to a significant increase in the conversion efficiency from pulsar spin down power to the shock-accelerated particle energy at orbital phases when the pulsar crosses the disk before periastron passage, and when the pulsar wind creates a cavity in the disk gas after periastron passage, respectively. On the contrary, in the model TeV light curve, which also shows a double peak feature, the first peak appears around the periastron phase. The possible effects of cooling processes on the TeV light curve are briefly discussed.Comment: 32 pages, 6 figues. Accepted for publication in Ap

    Is Economic Growth Associated with Reduction in Child Undernutrition in India?

    Get PDF
    An analysis of cross-sectional data from repeated household surveys in India, combined with data on economic growth, fails to find strong evidence that recent economic growth in India is associated with a reduction in child undernutrition

    Gamma Ray Signal from the Pulsar Wind in the Binary Pulsar system PSR B1259-63/LS2883

    Full text link
    Binary pulsar systems emit potentially detectable components of gamma ray emission due to Comptonization of the optical radiation of the companion star by relativistic electrons of the pulsar wind, both before and after termination of the wind. The recent optical observations of binary pulsar system PSR B1259-63/LS 2883 revealed radiation properties of the companion star which differ significantly from previous measurements. In this paper we study the implications of these observations for the interaction rate of the unshocked pulsar wind with the stellar photons and the related consequences for fluxes of high energy (HE) and very high energy (VHE) gamma rays. We show that the signal should be strong enough to be detected with Fermi close to the periastron passage, unless the pulsar wind is strongly anisotropic or the Lorentz factor of the wind is smaller than 10310^3 or larger that 10510^5. The higher luminosity of the optical star also has two important implications: (i) attenuation of gamma rays due to photon-photon pair production, and (ii) Compton drag of the unshocked wind. While the first effect has an impact on the lightcurve of VHE gamma rays, the second effect may significantly decrease the energy available for particle acceleration after termination of the wind.Comment: 17 pages, 6 figure
    • …
    corecore